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Abstract 
 
 A computer code has been written which calculates the small deformation stress 

and strain fields of a medium consisting of a pack of rigid spherical particles embedded 

in an elastic Hookean matrix.  The stress and strain tensors can be calculated at any point 

in the medium to within a user-specified accuracy.  Average mechanical properties of the 

medium are also output by the code.  The code has been used to simulate systems 

consisting of thousands of particles in a finite pack.  Optionally, the code treats an infinite 

pack made up of repeating 3D rectangular cells of a particle pack.  The multipole 

expansion technique used to solve the equations of small deformation for the elastic 

medium consists of truncated sums of complete orthogonal vector spherical harmonics.  

Techniques are presented which improve the convergence of the solution when the 

particles are in close proximity for highly filled materials.  The code has been tested 

against exact solutions of configurations consisting of a few particles as well as infinite 

packs of particles in body-centered cubic, face-centered cubic, and simple cubic lattice 

arrangements.  The code has been used to estimate mechanical properties of a variety of 

monomodal and bimodal particle packs of different packing densities for a matrix 

material with a variety of elastic constants. 
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1.  Introduction 

 Mechanical models of particulate materials can be categorized in several ways. 

• Particle properties:  isotropic, rigid particles, deformable particles, voids 

• Particle shape (Davis, 1999):  spherical (Goodier, 1933; Walpole, 1972), ellipsoidal 

(Robinson, 1951; Edwards, 1951; Eshelby, 1957; Buchalter, 1994), irregular 

(Yamamoto, et al., 1999), chopped fiber (Lopez-Pamies, 1996)  

• Matrix properties:  isotropic, linearly elastic, nonlinear elastic (Chen, et al., 1993), 

nonlinear viscoelastic (Schapery, 1986)  ;Matous, et al., 2005), nonlinear viscoplastic 

(Olsen et al., 1998) 

• Particle-matrix bond:  bond strength less than (Gent, 1980) or greater than (Gent et 

al., 1984) matrix failure strength (T. Smith, 1959; Sangani, 1997) 

• Microstructure evolution:  microstructure changes (e.g., particle debonding) or does 

not change with application of boundary condition history such as loads, 

temperatures, and chemical environments 

• Computational efficiency:  empirical models (van der Poel, 1958; Hashin, 1964; J. 

Smith, 1974, 1975, 1976), semi-empirical and bounded models (Hashin, 1983; 

Christensen, 1990; Aravas, 2005), special case models (Sangani, 1987), physics-

based models with simplified microstructural input (Christensen, 1990; Vratsanos, 

1993), intensive physics-based models with detailed microstructural input (Davis, et 

al., 1993; Phan-Thien et al., 1994; Torquato, 1997) 

 Many users of particulate material models need mechanical constitutive models 

that can be placed into a finite element code to predict the integrity of structures partially 

or wholly comprised of particulate composites.  The constitutive relation should satisfy 
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three criteria:  (1) reasonable accuracy, (2) computational tractability, and (3) numerical 

stability.  Unfortunately, computational tractability and reasonable accuracy are difficult 

to simultaneously obtain.  The more microstructural information one puts into a model, 

the more accurate it can be, but the more computationally intensive it will become. 

The construction of a routinely usable particulate model therefore becomes a search 

for those physical phenomena that have greatest impact for the least computational 

burden.  In order to filter through the most influential physical phenomena, we must have 

models that may themselves be too detailed and computationally intensive for practical 

use, but can guide and validate simpler models.  With a detailed model, one can quantify 

the accuracy and computational or stability gain for each simplifying assumption.  Broad 

treatments with many references on particulate theories and modeling issues may be 

found in Christensen (1979), Cusak (1987), and Torquato (2002). 

In this paper, we describe a computationally intensive model for rigid, bonded, 

spherical particles in an isotropic, linearly elastic matrix using Navier multipoles.  Later 

papers will present our efforts at computationally tractable statistical mechanical models 

condensed from the detailed treatment of this paper and with added microstructural detail 

such as debonding particles, viscoelastic and large deformation matrix materials, and 

nonspherical particles. 

 When the authors first employed a multipole expansion technique to treat the 

mechanical response of a particulate material (Davis, et al., 1993), several dozen particles 

could be efficiently modeled with Navier multipoles.  Since that early effort, another 

project was launched to refine and enhance the capabilities of the method.  A more 

elegant mathematical foundation based on vector spherical harmonics was adopted that 
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greatly simplified the multipole expansion method.  This formalism led to the 

straightforward implementation of addition theorems that give the solutions in terms of a 

large number of linear algebraic equations.  The use of addition theorems allows several 

efficiency measures to be incorporated into the solution of the problem so that thousands 

of particles in a highly filled medium can be efficiently modeled on current computers.  

An efficient technique was devised to treat the interaction between particles of very close 

proximity with very high order multipole terms. 

The original paper treated a finite collection of particles.  The method has since 

been extended to approximate an infinite medium with repeating 3D rectangular cells of 

particles.  The mathematical methods described in this paper are programmed in the 

PARMECH computer code. 

 Independently, work was carried along similar lines by other researchers.  Kushch 

(1997) used a multipole expansion technique to model aligned spheroidal particles (not 

necessarily rigid) in periodic repeating unit cells.  Addition theorems were used to reduce 

the problem to an algebraic system of equations.  Numerical solutions were given for a 

single particle in a unit cell corresponding to a periodic lattice. 

Sangani and Mo (1997) also used a multipole expansion technique to treat 

repeating cells of spherical particles.   Accurate calculations were made of highly-filled 

systems containing up to 32 random particles of a single size in the unit cell. 

 Despite the previous work in this area, there is a lack of calculations of model 

systems that can be used to guide the construction of particulate constitutive models.  In 

particular, the authors found no systematic calculations treating systems where the 

particles differed in size by a significant amount.  Of course such systems are challenging 
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because of the large number of small particles that must be included when a statistically 

significant number of larger particles are treated.  Nevertheless, such calculations are 

critical in validating models that treat collections of particles of different sizes. 

 Most of the calculations presented in this paper are for a matrix material with 

Poisson’s ratio near ½.  When the particles are in close proximity, the stress 

concentrations between close particles are particularly large for this condition.  To treat 

these concentrations accurately with a multipole expansion technique is a challenge and 

highlights the efficiency of the nearest neighbor treatment that allows the effective 

treatments of particles in close proximity. 

 In this paper the mathematical formulation based on vector spherical harmonics of 

the multipole expansion technique is summarized.  It is shown how the addition theorems 

can be applied to the governing equations to satisfy the appropriate boundary conditions.  

Efficiency measures implemented into the code are explained and the nearest neighbor 

treatment is derived.  Next, a comparison of predictions of the PARMECH code is made 

with exact solutions for a simple two-particle system as well as infinite repeating lattice 

arrangements of particles.  Predictions of the code for random arrangements of particles 

are also presented.  We treat in detail systems containing a single particle size and also 

two distinct particle sizes. 

 

2.  Elements of particulate models 

Three questions that should be addressed when building a microstructural 

particulate model are 

(1) What are the relevant properties of the individual phases? 
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(2) How are the phases geometrically arranged relative to each other? 

(3) What are the laws of interaction among the phases when subject to boundary 

conditions of interest? 

Within the scope of our work, we will answer the first question in this section, the second 

question in Section 3, and the third question in Section 4. 

 In the particulate composites of interest to us, the particle Young’s modulus is 

orders of magnitude higher than matrix modulus.  Hence we treat the particles as rigid.  

However, we emphasize that our multipole formalism works equally well for a set of 

nonrigid particles, each with its own Lamé constants.  The algebra involved roughly 

doubles but the conceptual framework is no more complicated. 

We treat the matrix as an isotropic, Hookean solid described by the two elastic 

Lamé constants, λ and μ.  These two constants are input to the model. 

We will treat the case where the particles are initially bonded and stay bonded to 

the matrix.  Again, the Navier multipole formalism can treat particles that debond from 

the matrix after a certain threshold criterion is met.  However, since there are a variety of 

boundary conditions that can be applied to debonding particles, there is much 

experimental and theoretical work still needed to write the simulation code for debonding 

particulate materials.  We have worked through some of the algebra on several debonding 

scenarios but these treatments are not programmed or mature enough to present here.  We 

hope to present them in subsequent work.  It is clear, however, that the computational 

burden will increase substantially, more than an order of magnitude, when debonding is 

permitted.  It is also clear that the nature of debonding and the subsequent particle-matrix 

boundary conditions for a given particulate material is not trivial to characterize. 
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3.  Random particle packing with arbitrarily broad particle size distributions 

 To make detailed microstructural calculations of particulate materials, one must 

have the detailed microgeometry of the particle pack.  Hence a particle-packing algorithm 

must be available which can place a sufficiently large number of particles to create a 

faithful statistical sampling of a full pack.  Many packing algorithms exist (Davis, 1999).  

Two important categories of particle packing models are ballistic deposition and 

molecular dynamics.  In ballistic deposition, the particles are added to the pack one at a 

time.  Each particle rolls about on the pack until it finds a stable equilibrium point resting 

upon other particles of the pack and/or upon a simulated container wall.  In molecular 

dynamics (as the name implies), the particles are placed in a container and allowed to 

move and collide with each other and the container wall as the wall slowly closes them 

into a close pack configuration.  The ballistic deposition algorithms are computationally 

much faster but do not pack to as high a packing density as the molecular dynamics 

methods.  A third category of packing algorithms grows the particles from randomly 

distributed seeds (Kochevets et al., 2001) which then move to avoid overlap as growth 

causes them to bump into each other. 

 The importance of the packing algorithm can hardly be overemphasized when 

dealing with particulate composites that are near close pack.  In close pack, the particles 

are nearly touching, that is, the mean surface-to-surface distance is much less that the 

particle radii.  The mechanical properties near close pack are ruled by the large stress 

concentration spikes that occur between nearly touching, rigid particles (Figure 1).  The 
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height and size of the stress concentration spikes are ruled by the distribution of surface-

to-surface distances, being inversely proportional to the surface-to-surface distance for 

 

 

 

Figure 1.  Stress concentration spike (trace of the stress tensor) plotted for the region around two rigid 
spheres embedded in a nearly incompressible matrix under uniaxial tension in the z direction.  These spikes 
dictate mechanical properties in highly filled particulate materials. 
 

nearly incompressible matrix material.  From experience, we have learned that even 

though a packing algorithm may give the correct volume fraction of particles, if it does 

not mimic the actual surface-to-surface distance distribution of the real material, the 

predicted mechanical properties can be in error by a few hundred percent.  A 
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considerable burden is therefore placed on the researcher to understand how the real pack 

was constructed and adapt packing algorithms that yield the same surface-to-surface 

distance distributions with good fidelity. 

 The particle packs of interest to us have broad size distributions.  Most packing 

algorithms cannot treat broad distributions because of the simple problem of numbers.  

Consider a bimodal pack where the two particle sizes differ by a factor of one hundred.  

Suppose the coarse and fine modes are roughly equivalent in volume quantity.  Then, 

since the particle diameters differ by 102, the particle volumes differ by 106.  If one must 

place several thousand coarse particles to get a reasonable statistical sampling of the 

pack, it follows one must place 106×(several thousand) = several billion small particles to 

fill the interstitial spaces of the larger particles. 

 To circumvent this problem, we devised a scheme called a reduced-dimension 

packing algorithm (Davis et al., 1990), the short-comings of which have been recently 

corrected (Webb et al., 2006) to provide a robust packing code PARPACK for broader 

size distributions than are currently available in other packing codes (Figure 2).  On 

current desktop computers, PARPACK can create simple packs with a few million 

particles (far more than is generally needed to obtain the statistical flavor of simple 

packs) in a few minutes and more complex packs of the same size in a few hours.  

PARPACK can also generate coordination numbers for the modes of the pack and their 

radial distribution functions.  Generating higher-order statistical functions would be a 

simple matter but has not been done at this point. 

 We use PARPACK to generate packs used by the PARMECH code described in 

this paper. 
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Figure 2.  Visualization of a reduced dimension pack.  The smaller particles are constrained to lie close to 
the pack axis.  Then the statistics of the inner small particle columns are projected into the outer part of the 
pack where the larger particles place themselves according to small particle statistics.  Hence, large 
particles lying in the outer regions of the pack respond to small particle statistics rather than billions of 
small particles themselves.  In this way we mimic full 3D pack statistics with broad size distribution with a 
tiny fraction of the particles needed in a 3D pack.  This cut-away picture peers past some large particles 
into the small-particle core of the pack. 
 

 

4.  The laws of interaction 

 In this section we describe the mathematical foundations of the multipole method 

of solution used by the PARMECH code.  In subsequent sections, we discuss efficiency 

measures employed by the code to speed the solution process.  We also summarize the 

capabilities of the code. 
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4.1  General solution of the Navier equation 

 The Navier equation for elastic, isotropic, Hookean material is given by  

 0)()2( =×∇×∇−⋅∇∇+ uu rr μμλ  (1) 

where λ and μ are the Lamé constants.  The small deformation displacement vector is 

denoted by ru .  Cartesian components will be used for all displacement vectors so that 

they may be readily added when the interactions of many spheres are included.  However, 

each Cartesian component of  is in spherical polar coordinates (r,θ,ϕ) centered on the i-

th sphere, which that particular displacement vector field is describing: 
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where the constants are called the multipole moments for sphere i and r is the 

distance from the center of the sphere (r ≥ a) .  The 

i
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 are vector spherical 

harmonics defined by (Varshalovich et al., 1988, p. 210) 
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 The Navier solution (3) about a sphere simplifies considerably at r = a:   
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The completeness of the vector spherical harmonics implies that any displacement field 

obeying the Navier equation about a sphere can be described, from a simple translational 

displacement of a bonded sphere to a complex displacement for an unbonded sphere.  

Only the bonded sphere is treated in this paper.  The orthonormality of the vector 

spherical harmonics allows the boundary condition about a sphere to be applied without 

the need for time-consuming numerical integrations. 

The general solution to the Navier equation for N spherical particles can be 

written as 
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where ir
r  is the position of particle i.  The first sum in (9) is a sum of single particle 

solutions defined in (3) and goes to zero as r → ∞.  The second sum represents the 

applied field far from the particles with Fnm derived from the applied strains.  The 

specific solution to a given problem is therefore obtained by determining the coefficients 

 of (3) that satisfy the boundary conditions for the problem. i
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4.2  Boundary conditions and addition theorems 

 The PARMECH code currently treats the problem for which the particles are 

bonded to the matrix material.  The boundary condition at the surface of a particle is 

given by a rigid displacement and rotation of the particle surface and can be written as 
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where the first term in the sum gives the translation of the surface and the second term 

gives the rotation of the surface. 

  Large computation efficiency is achieved through the powerful mathematical 

relationship of addition theorems that expresses a vector spherical harmonic about a point 

jrr  in terms of a sum of vector spherical harmonics about a point ir
r .  This allows the 

general solution (9) evaluated at the surface of sphere i to be rewritten in terms of a sum 

of vector spherical harmonics with coordinates centered about the point ir
r  as 
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particle pack.  Their derivation is given in Appendix A. 
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The boundary conditions are now easily applied by setting (10) equal to (11) and 

applying the orthonormality condition of (6), then rearranging terms to obtain the 

following set of linear equations:  
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Given the displacements  and rotations , (13) can be solved for the coefficients 

, thus completely specifying the displacement vector field and providing a complete 

solution to the problem. 

i
mγ

i
mψ

i
nmLB ,

 The solution process is easily modified if the rotations and displacements are not 

specified but that the particles are in equilibrium (i.e., forces and torques on each particle 

are zero) is specified.  For this case it can be shown that  

 ,   (force and torque on particle i are zero). (14) 00 1,11,0 == i
m

i
m BandB

The displacements  and rotations  can then be determined from (13). i
mγ

i
mψ

4.3  Efficiency measures and nearest-neighbors treatment 

 When solving (13), the sums can be truncated at some maximum value Lmax 

depending on the desired accuracy of the solutions.  It is important to truncate this sum at 

the lowest reasonable value since the number of terms Nmp  in a given particle’s multipole 

expansion grows as 

 Nmp = 3(Lmax+1)2 . (15) 

When stress concentrations in the problem are large, as they are for packs where the 

particles are in close proximity, a large value of Lmax is required for good accuracy.  The 

values of Lmax that are required for a given accuracy are discussed in later sections. 

 Another efficiency measure is possible by looking at the form for the off-center 

expansion coefficients 
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where Rij is the distance between spheres i and j.  Thus, the off-center expansion 

coefficients become small when the particles are far apart for large values of  andL L′  

which allows an earlier truncation of the sum. 

 A further important efficiency measure, which we refer to as the nearest-

neighbors treatment, is included in the code to allow an accurate treatment of particles 

when they are in close proximity.  This approximation is of value when the Poisson’s 

ratio is near 0.5. 

The greatest stress concentration in a particle pack is in the region between two 

nearly touching particles.  The stress concentrations are particularly high when the 

Poisson’s ratio of the matrix material is near 0.5 and there is an axial displacement of the 

two particles.  The asymptotic load transfer between the two spheres in that case is 

proportional to ε−1, where ε is a dimensionless distance between the sphere surfaces.  On 

the other hand, when the Poisson’s ratio is not near 0.5 or for a shear displacement 

between particles when Poisson’s ratio is near 0.5, the asymptotic load transfer (Phan-

Thien et al., 1994, Ch. 4) is proportional to ln(ε-1). 

These two-body interactions can be described with a large number of multipoles 

separately from the remainder of the pack.  For some calculations, while the general pack 

used an Lmax of 12, the nearest-neighbors treatment used an Lmax of 200 for the two-body 

interaction only. 

We let NNi be the set of nearest neighbors of particle i and write the multipole 

expansion coefficients of particle i as 
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The first two terms on the right hand side of (17) describe the displacement and rotation 

of particle i, the ji
nmLB ,

,

)
 represents the contribution due to the tensile interaction of particle 

i with particle j and must be treated with high order, and the  give the remaining 

contribution to the multipole coefficients and need not be treated with high order. 

i
nmLA ,

If we substitute (17) into (13) for the nearest neighbors of particle i we obtain the 

following relationship: 
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Now ji
nmLB ,

,

)
 is defined as the solution to (8) when there are only two neighboring particles 

(other particles are not present) and their displacement is purely tensile with no rotation 

or far field. Thus, 

 , (19) (∑
′′′

′′′
′′′′′′ +−=

mnL

ijmnL
nmLnL

ijt
m

ij
mnL

ji
nmL CBB

,

,,
,10

,,,
,

,
, δδγ

)) )

where the tensile component of displacement is given by 
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with ijji rrr vvv −=  the vector pointing from the center of particle i to the center of particle j. 

 We can substitute (19) into the left hand side of (18) and solve for  as i
nmLA ,
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Subtracting out the tensile component from the displacement in (21) allows the use of 

much lower values of L because only shear displacements remain for the nearest 

neighbors.  In the computer code, we solve (19) to high order in L.  This is facilitated by 

solving (19) for a unit displacement in a reference frame where the two particles are 

aligned along the z axis so that there is cylindrical symmetry and only m = 0 values are 

required in the multipole expansion, thus reducing the number of multipole terms from 

O(Lmax
2) to O(Lmax).  The ji

nmLB ,
,

)
 are then derived from the calculated ji

nLB ,
0,

)
 by applying the 

proper rotation using well-known rotation properties of the vector spherical harmonics 

(Varshalovich et al., 1988) and scaling according to the actual displacement of the 

particles.  The coefficients  are calculated from (21) through an iterative procedure 

and used in (17) to calculate the multipole coefficients . 

i
nmLA ,

i
nmLB ,

The nearest neighbor treatment allows the use of a much smaller Lmax for an 

accurate treatment of a particle pack and hence greatly reduces the memory requirements 

and computational time for each iteration.  However, the number of iterations required to 

reach convergence is increased.  In a later section we compare the treatment of particle 

packs with and without the nearest neighbor treatment and demonstrate the computational 

advantages of using this efficiency measure for highly filled packs. 
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5.  Infinite particle packs consisting of repeating cells of particles 

Up to this point we have discussed the theory for a system consisting of a finite 

number of particles N.  The PARMECH code also treats pseudo-infinite systems where 

the particle configuration is made by stacking a cell into a three-dimensional grid of 

rectangular unit cells consisting of N particles.  The centers of all the particles must fit 

inside the unit cell in such a way that particles do not overlap with particles of the 

neighboring cell.  A slice through two neighboring unit cells of particles is shown in 

Appendix B. 

The formalism remains as described above with the contribution from other cells 

included in the off-center expansion coefficients. Thus, the “pseudo-infinite” system is 

actually a very large finite system made up of the repeated unit cells that consists of an 

inner region where the relative displacement fields in each of the cells is identical.  This 

inner region is much larger than the dimension of the unit cell. 

Only the multipole coefficients  for the unit cell need be treated, but the off-

center expansion coefficients  must include contributions from each of the 

neighboring cells.  Appendix B describes an efficient technique to calculate the off-center 

expansion coefficients. 

i
nmLB ,

ijmnL
nmLC ,,

,
′′′

 

6.  Mechanical properties of a collection of particles 

The code will estimate the mechanical properties of a random finite collection of 

particles in an approximately spherical geometry.  Given a random spherical finite pack 

of particles and uniaxial strains in the elastic medium far from the particles, the code 

calculates the displacement of each particle in the pack as well as estimates an effective 
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modulus and Poisson’s ratio for the pack.  This assumes the pack is isotropic.  The 

mechanical properties of the pack are determined by a fit to the exact solution of a 

spherical body embedded in an elastic medium (Goodier, 1933).  Details are given in 

Appendix C. 

For an infinite pack, the mechanical properties of the system are determined from 

the average stress and strain tensor seen in the unit cell, and are derived in Appendix D. 

 

7.  Method of solution of the linear set of equations 

We employ an iterative method of solution for the linear set of equations (13).  An 

initial guess is provided for all , that guess being those multipole moments 

appropriate for an isolated sphere in an infinite medium with uniform applied fields.  The 

 for each particle i is then recalculated by setting its value equal to the right hand 

side of (13).  The convergence can be surprisingly fast depending on how close the 

particles are.  For example, a 13000-particle pack with a volume concentration of 

particles C = 0.10 will converge in 16 iterations while a large pack with volume 

concentration of C = 0.50 may take more than 100 iterations to converge. 

i
nmLB ,

i
nmLB ,

 

8.  Results 

 In this section we summarize some of the simulations that have been done with 

the PARMECH code.  We begin by comparing the code results to exact calculations of 

model systems that have been studied in the literature.  This includes forces on two 

spherical particles and systems made up of spherical particles arranged as infinite cubic 

lattices. 
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We also present results for random arrangements of monomodal and bimodal 

packs of particles.  Care was taken in the construction of dense packs to prevent building 

into the packs order that would result in artificial crystallinity.  The packs were generated 

with a method to build a pack of touching particles (Webb et al., 2006).  The pack was 

then allowed to expand into a fixed volume, keeping all particle sizes constant, using a 

random ballistics/collision dynamic simulation.  The dynamic randomization was run 

long enough to allow the total distance of travel of a particle to be many times the 

distance across the confining volume.  The result is a detailed knowledge of the material 

microgeometry, with a user-specified volume fraction (always less than the packing 

fraction), consistent with fully random fabrication of the material. 

8.1  Simple two-particle system 

To study the convergence of the multipole solutions and the accuracy obtained for 

a given Lmax, we compared our solutions with exact two-sphere solutions derived in 

bispherical coordinates by Shelley and Yu (1966).  Table I shows the excellent agreement 

of the PARMECH predictions with the exact bispherical solutions.  The parameter ε, 

mentioned earlier, is a dimensionless variable that indicates the proximity of the spheres 

and is defined as 

ε = (surface-to-surface distance)/(diameter of smallest sphere). (22) 

As expected, when the spheres are close together, much higher Lmax is required to achieve 

high accuracy, hence the importance of the nearest neighbors treatment discussed in 

previous sections. 
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Table I.   Comparison of PARMECH Predictions with Exact Results for the Forces 
between Two Equal Sized Spheres With Equal and Opposite Uniaxial 
Displacements 

Matrix Poisson Ratio σ = 0.5  
 
Particle Proximity ε  

 
Exact Force 

PARMECH 
Calculated Force

Error 
(%) 

 
Lmax

1.0 3009.6747 3009.6747 0.0 4 
8686.6202 0.4 8 
8718.8904 0.0006 16 

0.1 8718.9434 

8718.9417 0.00002 26 
47477. 10. 21 
50694.3 4. 26 

52982.554 0.02 50 

0.01 52993.6830 
 

52993.6830 0.0 100 
474229.41 1.0 200 0.001 479048.65 
479048.55 0.00002 400 

 
 
8.2  Infinite cubic lattice arrangements of particles 

In order to provide a rigorous testing of the code, we have compared the code 

results to calculations in the literature for infinite lattice arrangements of SC, BCC, and 

FCC symmetry (Nunan et al., 1984; Sangani et al., 1987).  For these cubic lattices the 

effective elasticity tensor can be written as 

 Cijkl = (λ+μγ)δijδkl  + μ(1+β)(δikδjl + δilδjk) + μ(α − β)δijkl , (23) 

where λ and μ are the Lamé constants of the elastic medium, δijkl is unity if all the 

subscripts are equal and zero otherwise, and α, β, and γ depend on the lattice arrangement 

and elastic medium Poisson ratio σ. 

The PARMECH code was used to calculate α, β, and γ for different volume 

fractions C and Poisson’s ratio σ for the simple cubic (SC), body-centered cubic (BCC), 

and face-centered cubic (FCC) infinite lattices.  A comparison of code results to literature 

values is given in Tables II-IV.  The literature results are read off of small graphs and are 

thus not accurate at the third decimal place. 

 22



The excellent agreement of PARMECH with literature values provides 

confidence that the PARMECH code will predict correct results for random packs.  In 

generating the effective elasticity tensor for these tables, a complex far field strain (i.e., 

Exx = 0.03, Eyy = −0.06, Ezz = 0.1, Exy = 0.05, Exz = 0.1, Eyz = 0.2) was applied to the 

pack in the PARMECH code simulation so that non-trivial shear and tensile stresses were 

applied between particles, thus ensuring that the correct solutions was not the result of the 

problem symmetry. 

Table II.   Comparison of PARMECH Results with Results of Nunan et al., (1984) 
and Sangani et al., (1987) for the Simple Cubic (SC) Infinite Lattice 
Volume fraction C 
Poisson ratio σ 

  
α 

 
β 

 
γ 

PARMECH 2.69 1.25 0.749 C=0.4 
σ=0.3 NK 2.71 1.27 0.744 

PARMECH 4.43 1.29 4.73 C=0.4 
σ=0.45 NK 4.35 1.27 4.76 

PARMECH 5.12 2.06 0.834 C=0.47787 
σ=0.3 NK 5.25 2.01 0.840 

PARMECH 9.98 2.10 5.62 
NK 10.4 2.01 5.67 

C=0.47787 
σ=0.45 

SL 10.0 2.10 5.53 
 
 
Table III.   Comparison of PARMECH Results with Results of Nunan et al., (1984) 
for the Face Centered Cubic (FCC) Infinite Lattice 
Volume fraction C 
Poisson ratio σ 

  
α 

 
β 

 
γ 

PARMECH 1.32 1.66 1.46 C=0.4 
σ=0.3 NK 1.39 na* 1.48 

PARMECH 1.50 2.13 6.35 C=0.4 
σ=0.45 NK 1.53 na* 6.33 

PARMECH 3.45 4.61 3.45 C=0.6 
σ=0.3 NK 3.48 na* 3.37 

PARMECH 4.48 7.30 14.2 C=0.6 
σ=0.45 NK 4.53 na* 14.1 
na*  Nunan-Keller results for β are incorrect according to Sangani (1987). 
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Table IV.   Comparison of PARMECH Results with Results of Nunan et al., (1984)  
for the Body Centered Cubic (BCC) Infinite Lattice 
Volume fraction C 
Poisson ratio σ 

  
α 

 
β 

 
γ 

PARMECH 1.30 1.69 1.49 C=0.4 
σ=0.3 NK 1.32 1.62 1.45 

PARMECH 1.46 2.18 6.39 C=0.4 
σ=0.45 NK 1.48 2.11 6.40 

PARMECH 2.55 3.76 2.89 C=0.55 
σ=0.3 NK 2.53 3.71 2.86 

PARMECH 2.97 5.77 12.0 C=0.55 
σ=0.45 NK 2.98 5.41 12.0 
 
 
 
8.3  Random monomodal particle packs 

 PARMECH simulations have been performed on random particle packs with both 

a finite spherical geometry and infinite packs made up of repeating unit cells.   Results 

for monomodal packs are summarized in Table V.  The Poisson ratio in these calculations 

is 0.5.  We list the order Lmax used in the general multipole expansion and the multipole 

expansion for the nearest-neighbors treatment.  The average minimum ε (see (22)) listed 

in this table is the average over all particles in the pack of the minimum ε for each 

particle with its closest neighbor. 

 The PARMECH simulations of the finite packs in Table V used a uniaxial tensile 

strain as described in Appendix C.  The simulations of the infinite pack applied a 

complex far-field strain (i.e., Exx = 0.03, Eyy = -0.13, Ezz = 0.1, Exy = 0.05, Exz = 0.1, 

Eyz = 0.2) to the pack.  The average stresses and strains in the medium were calculated as 

described in Appendix D for the infinite medium.  For an isotropic homogeneous linear 

elastic medium, the average stress is  

related to the average strain by 
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The simulations were performed with the condition 0=∑
k

kkτ , so that  

a
ijeffij Eμτ 2=  or a

ij

ij
eff E2

τ
μ = .  Because the packs do not represent a perfectly isotropic 

medium, we can obtain an independent effective shear modulus for each of the six 

independent values of ij.  The values shown in Table V are an average of the six values 

with their standard deviations.  

For the pack with C = 0.06 and C = 0.1, a nearest neighbors treatment is not 

needed and Lmax = 8 is adequate for good accuracy because the average minimum ε for 

these packs is greater than 0.1, a particle separation that was treated with good accuracy 

with Lmax = 8 in Table I.  A comparison of results with identical packs for C = 0.3 and C 

= 0.4 (packs with 71 and 49 particles, respectively) indicates that a maximum value of L 

= 8 for these cases is probably adequate to get the needed accuracy when the nearest-

neighbors method is used.  However, improved accuracy is achieved for C = 0.5 with L = 

12, as seen for the pack with 50 particles. 

The degree that the pack deviates from isotropy can be estimated by the standard 

deviation of the effective modulus.  It can be seen that the packs with the higher volumes 

of solids have the highest deviations from isotropy.  Also, as expected, the packs with 

larger numbers of particles generally have a lower standard deviation. 
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Table V.   PARMECH Predictions of Effective Shear Modulus Divided by Matrix Shear 
Modulus ( matrixeff μμ / ) for Monomodal Packs  

Poisson’s Ratio σ = 0.5  
 
Volume fraction 

C of Pack 

 
Pack 

Geometry 

Average 
Minimum

ε 

 
 

Lmax

Nearest 
Neighbors

Lmax

Number 
of 

Particles 

 
 

matrixeff μμ /  
Spherical 0.67 4 no 1279 1.18 
Spherical 0.67 4 no 12820 1.18 
Infinite 0.53 8 200 30 1.16±0.01 

C = 0.06 

Infinite 0.36 8 200 147 1.17±0.002 
Spherical 0.50 4 200 1278 1.28 
Spherical 0.50 8 200 12820 1.28 
Infinite 0.26 8 200 39 1.30±0.02 

C = 0.1 

Infinite 0.23 8 200 148 1.32±0.02 
Infinite 0.094 8 200 48 1.80±0.13 C = 0.2 
Infinite 0.103 10 200 145 1.75±0.05 
Infinite 0.039 8 200 71 2.51±0.38 
Infinite 0.039 12 200 71 2.51±0.38 

C = 0.3 

Infinite 0.052 10 200 161 2.72±0.19 
Infinite 0.029 8 200 49 4.05±0.38 
Infinite 0.029 12 200 49 4.06±0.37 
Infinite 0.027 12 200 156 4.47±0.55 

C = 0.4 

Infinite 0.027 12 200 312 4.34±0.10 
Infinite 0.0083 8 200 50 8.66±1.15 
Infinite 0.0083 12 200 50 8.74±1.10 
Infinite 0.0121 12 200 167 7.80±2.15 

C = 0.5 

Infinite 0.0109 12 200 318 7.76±0.54 
Infinite 0.0047 12 200 47 13.28±1.09 
Infinite 0.0062 12 200 175 18.08±5.61 

C = 0.55 

Infinite 0.0071 12 200 332 12.34±1.27 
 
 
8.4  Accuracy of nearest neighbors treatment 

 As discussed previously, the nearest-neighbors approximation treats the tensile 

displacements of particles in close proximity with a high order of multipole terms, and is 

most useful when the Poisson’s ratio is close to ½.  We compare the results of the code 

using the nearest-neighbors treatment to results obtained to high order without the 

nearest-neighbors approximation.  Table VI shows the results of these comparisons with 
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monomodal particle packs at 0.50 and 0.55 volume fraction of solids.  Again, the 

Poisson’s ratio is ½. 

 

Table VI.   Comparison of Nearest Neighbors Treatment to High Order Treatment of Highly 
Filled Monomodal Packs 
Poisson’s Ratio σ = 0.5  

 
Volume 
fraction 

C of 
Pack 

Aver-
age 

Min-
imum 
ε 

 
 

Number 
of Part-

icles 

 
 
 
 

Lmax

Near-
est 

Neigh-
bors 
Lmax

Memory 
for 

Matrix 
Storage 

(Gb) 

 
Number of 
Iterations 
to Conver-

gence 

 
Rela-
tive 
CPU 
Time 

 
 

E/Ematrix

12 200 0.85 428 1.0 8.742±1.10   
12 no 0.83 89 0.23 8.11±0.82 
16 no 1.87 121 0.56 8.43±0.92 
20 no 3.68 152 1.35 8.58±0.97 
24 no 6.54 181 2.85 8.67±1.00 
28 no 10.83 209 4.66 8.717±1.03 
32 no 16.85 234 9.13 8.744±1.04 

C = 0.5 0.0083 50 

36 no 24.95 258 15.7 8.761±1.06 
12 200 0.84 

(in RAM)
416 1.0 13.29±1.08 

12 no 0.82 
(in RAM)

97 0.41 10.59±1.71 

16 no 1.88   133 2.26 11.43±1.87 
20 no 3.75 167 5.13 11.97±1.86 
24 no 6.78 199 10.9 12.33±1.78 
28 no 11.38 233 22.1 12.57±1.68 
32 no 17.96 266 40.9 12.75±1.59 

C = 0.55 0.0047 47 

36 no 27.17 295 65.3 12.87±1.52 
 
 

From Table VI it can be seen that the nearest-neighbors treatment is effective at 

predicting mechanical properties of highly filled packs using a relatively low order in the 

multipole expansions with less memory and CPU requirements than the simulations 

without the nearest-neighbors option.  It is also apparent that Lmax = 12 is adequate to 

achieve good accuracy.  We note that the predicted results with the nearest neighbors 
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treatment is not expected to be exactly the same as a high order multipole simulation 

without the nearest neighbors treatment since the nearest neighbor treatment only uses a 

high order multipole on the dominant tensile displacement, and does not use a higher 

order on the shear displacements between particles. 

8.5  Random bimodal particle packs 

 One of the reasons the PARMECH code was developed was to help guide the 

construction of constitutive models that might use statistical averages for the arrangement 

of particles in a material to estimate its mechanical properties.  Such a task can become 

increasingly challenging when different sizes of particles can interact in a medium.  

Therefore, we have run PARMECH simulations on a number of bimodal packs with 

particle volume fractions from 0.2 to 0.6.   These have been run with the volume ratio of 

coarse to fine particles at 3 and 9.  The ratio of diameters of coarse to fine particles varies 

from 2.5 to 7.5. 

Results are summarized in Table VII.  It will be noted that no results are given for 

some systems at the 0.6 volume fraction.  This is because the code sometimes does not 

converge for high volume fractions when the nearest-neighbors treatment is used.  It 

appears that the stiff interactions of many particles in close proximity sometimes results 

in particle displacements that grow during the iteration process.  We have been able to 

improve the convergence behavior by switching on the nearest-neighbors treatment 

gradually, but there are still occasions when the code does not converge. 

We have compared the calculations to the predictions of an effective medium 

theory where the large particles are assumed to be in an effective homogeneous medium 
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with mechanical properties of the small particles in the elastic matrix.  These 

comparisons are shown in Table VII.   

In the table the volume fraction C of the pack is given as the sum of the coarse 

and fine volume fractions of particles Cc and Cf.  The modulus of the effective medium is 

calculated from a simulation of a monomodal pack at a volume fraction Ceff that is given 

by the fine particles filling a volume of the pack that consists of the total volume minus 

the volume of coarse particles Ceff
 = Cf /(1 − Cc).  The calculation of the modulus of the 

coarse particles was made using the same particle pack as the bimodal system, but with 

the fine particles removed.  Clearly, when the particles sizes differ by a large amount, 

such an effective medium approximation should be accurate.  However, when the 

surface-to-surface distances of the larger particles are on the order of the size of the 

smaller particles, then the critical high-stress region between particles cannot be treated 

as an effective medium.  For this case, the effective medium theory should always give a 

larger estimate for the modulus since the region between particles is assumed to have the 

larger modulus of the effective medium of the fine particles.  That is what is seen in these 

calculations.  When one compares the average minimum surface-to-surface distances 

represented by the non-dimensional parameter ε to the particle size of the small particles, 

it is somewhat surprising that the effective medium theory does so well.  Of coarse, the 

agreement is worse as the volume fraction of particles increases. 

 It is our plan to use these and additional calculations of the PARMECH code to 

assist in developing a constitutive theory based on statistical pack properties for the 

effective modulus of composite materials containing rigid spherical particles of different 

sizes. 
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Table VII.  PARMECH (PM) Calculations of Modulus for Bimodal Particle Packs with Matrix Poisson’s Ratio Equal to 1/2 
Comparisons to an Effective Medium Theory (EFT) 

Bimodal Pack Coarse Particles Alone 
(Pack with fines removed) 

Effective medium, 
202 fine particles 

 
 

Cc/Cf

 
 

C 

 
 

Rc/Rf

Number 
of Coarse 
Particles 

Number 
of Fine 

Particles 

 
PM 
E/E0

EFT 
E/Eeff×Eeff/E0

Percent 
Differ-
ence 

 
 

Cc

Average 
Minimum 

ε 

 
PM 

E/Eeff

 
 

Ceff

 
PM 

Eeff/E0

3 0.2 2.5 54 281 1.897 1.916 1.0 0.15 0.117 1.636 0.0588 1.166 
3 0.2 5.0 19 791 1.755 1.781 1.5 0.15 0.130 1.521 0.0588 1.166 
3 0.2 7.5 10 1406 1.748 1.767 1.1 0.15 0.173 1.509 0.0588 1.166 
3 0.4 2.5 54 281 4.700 4.562 -2.9 0.3 0.022 3.064 0.1429 1.499 
3 0.4 5.0 19 791 4.074 4.203 3.2 0.3 0.045 2.823 0.1429 1.499 
3 0.4 7.5 10 1406 4.547 5.127 12.7 0.3 0.019 3.443 0.1429 1.499 
3 0.5 2.5 54 281 8.341 8.670 3.9 0.375 0.015 4.904 0.2 1.766 

1.766 3 0.5 5.0 19 791 7.982 9.026 13.1 0.375 0.006 5.105 0.2 
3 0.5 7.5 10 1406 9.489 11.122 17.2 0.375 0.010 6.291 0.2 1.766 
3 0.6 2.5 54 281 nc 15.693 nc 0.45 0.006 7.012 0.2727 2.279 
3 0.6 5.0 19 791 21.543 24.909 15.6 0.45 0.005 11.13 0.2727 2.279 
3 0.6 7.5 10 1406 nc 17.539 nc 0.45 0.002 7.837 0.2727 2.279 
9 0.2 2.5 68 118 1.888 1.874 -0.8 0.18 0.106 1.761 0.0244 1.065 
9 0.2 5.0 39 542 1.761 1.770 0.5 0.18 0.134 1.664 0.0244 1.065 
9 0.2 7.5 15 703 1.774 1.778 0.2 0.18 0.096 1.671 0.0244 1.065 
9 0.4 2.5 68 118 4.133 4.203 1.7 0.36 0.024 3.571 0.0625 1.176 
9 0.4 5.0 39 542 4.471 4.588 2.6 0.36 0.019 3.898 0.0625 1.176 
9 0.4 7.5 15 703 3.834 4.015 4.7 0.36 0.028 3.411 0.0625 1.176 
9 0.5 2.5 68 118 9.261 9.742 5.2 0.45 0.011 7.629 0.0909 1.269 
9 0.5 5.0 39 542 6.480 6.999 8.0 0.45 0.014 5.481 0.0909 1.269 
9 0.5 7.5 15 703 7.598 8.318 9.5 0.45 0.010 6.514 0.0909 1.269 
9 0.6 2.5 68 118 nc 19.742 nc 0.54 0.005 13.71 0.1304 1.445 
9 0.6 5.0 39 542 18.363 22.277 21.3 0.54 0.004 15.47 0.1304 1.445 
9 0.6 7.5 15 703 nc 21.701 nc 0.54 0.001 15.07 0.1304 1.445 

nc = no convergence

 



 

9.  Summary 

 The PARMECH computer code calculates the stress and strain fields of a 

deformed medium consisting of a pack of rigid spherical particles embedded in an elastic 

matrix.  The desired stress and strain can be calculated at any point in the medium to 

within a user-specified accuracy, limited only by the computation time.  Average 

mechanical properties of the medium are also output by the code.  The code can be used 

to simulate systems consisting of thousands of particles in a finite pack or an infinite pack 

consisting of a repeating rectangular cell of particles. 

A multipole expansion technique is used to solve the equations of small 

deformation for the elastic medium and consists of truncated sums of complete 

orthogonal vector spherical harmonics that are exact analytical solutions for a single 

spherical particle.  A solution is obtained by solving for the coefficients in the multipole 

expansion from a large set of simultaneous linear equations. Techniques are used to 

improve the convergence of the solution when the particles are in close proximity for 

highly filled mediums. 

The PARMECH code results agree with exact solutions of configurations 

consisting of a few particles as well as infinite packs of particles in body-centered cubic, 

face-centered cubic, and simple cubic lattice arrangements. 

The code has been used to estimate mechanical properties of a variety of 

monomodal and bimodal particle packs of different packing densities.  Eventually, the 

code will be used to help derive a constitutive theory for highly filled particulate 
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materials with broad size distributions of particles that debond from the matrix during 

loading. 

 

Appendix A.  Translation coefficients of Navier multipole solutions valid on the 

surface of Sphere i 

In this appendix we use addition theorems to derive off-center expansion coefficients 

of (11).  The off-center expansion coefficient is defined as 
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where the expansion coefficients )(,;
,; ji

mnL
mnL RD jjj

iii

r
are functions only of the relative position 

vector jiR
r

.  We will derive them below. 
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 The off-center multipole expansion for the nonharmonic term is 
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where we will only calculate the off-center term for Lj = nj − 1 since the nonharmonic 

terms are zero for the other two values of Lj.  Thus the off-center expansion coefficient is 
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where  is the same as the  in (3d). 
jnd nd

The harmonic term coefficients are given by the integral 
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and the nonharmonic term coefficients by the integral 
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Expressions for scalar harmonic function off-center expansions, which are needed in (A5) 

and (A6) for the functions of (rji,θji,ϕji), are given by Varshalovich (1988): 
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Performing the integral of (A5) for the harmonic term of the Navier off-center expansion, 

one obtains 
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where the constant coefficient is given by 
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where the  are the Wigner 3j symbols which are also defined in 

Varshalovich (1988). 
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 The nonharmonic term’s off-center expansion is more complicated but it only 

exists when Lj = nj − 1.  We can write the nonharmonic term as follows: 
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We have used the law of cosines, , where αcos2222
jiijiiji RaRar −+=

 34



 ( .sinsin
2
1coscos

)cos(sinsincoscoscos

)()( jiijii ii
ijiiji

jiiijiiji

ee Φ−−Φ− +Θ+Θ= )
Φ−Θ+Θ=

ϕϕθθ

ϕθθα
 (A11) 

Then (A6) becomes 
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The first term in the final square brackets of (A12) has no angular dependence and can be 

evaluated as before, i.e., as a harmonic term.  The second term has a cosθi factor.  The 

third term has a and the fourth term, a .  The dot product of the vector 

spherical harmonics turns the expression into a sum of scalar spherical harmonic 

products.  Then the second, third, and fourth terms of the final square brackets can be 

turned into pure spherical harmonics via the following recursion relations found again in 

Varshalovich (1988). 
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In using these recursion relations, we note that in the integral of (A12) the vector 

spherical harmonic we are integrating is complex conjugated and so we use 
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The entire integral of (A12) is laborious but straightforward: 
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Detailed evaluation of  shows that this coefficient is identically zero.  It will not be 

written out explicitly in the following equations. 
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There are two coefficients in the third line of (A15).  The coefficient is given by jj
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The second coefficient, , in the third line of (A15) is given by jj
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Appendix B.  Treatment of a pseudo-infinite particle pack via repeating cells 

 A pseudo-infinite particle pack is created by making a collection of particles with 

centers that lie in a cubic cell with volume L3 and then repeating the cell a large number 

of times in all directions.  It is assumed that Nc (with Nc >>1) cells from a relatively-small 

central portion of this pack undergo identical distortions when the whole pack is 

distorted.  We refer to this as a pseudo-infinite pack.  This geometry allows us to use the 

same mathematical framework as with a finite pack that has asymptotic deformations far 

from the particles. 

 The particle pack must be made so that a particle in a cell does not overlap a 

particle in a neighboring cell.  Figure B-1 shows two adjacent cells from a two 

dimensional slice through a pack.   
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LL

Figure B-1.  Cross section of two identical adjacent cells of particles 
 
 
Great computations efficiencies can be realized because only the multipole coefficients 

for a single cell need be stored as each cell is identical and because analytical expressions 

can be used to sum the effect of exterior cells on a central cell. 

 We delineate the cell by the subscript s with s = 0 being the center cell, is being 

the ith particle in cell number s.  Since each cell is identical, the multipole coefficients do 

not depend on the cell in which they are contained and  .  With this 

nomenclature we can rewrite (11) for the particles in the center cell as 

i
nmL

i
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where 
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Equation (B1) is the same form as (11) with the trivial difference that the right hand side 

of (B1) depends on  so that the same solution technique can be applied to both the 

finite particle pack and the infinite particle pack of repeating cells. 

i
nmLB ,

 To calculate the  one could do a direct summation over cells according to 

(B1).  This, however, can be computationally intensive for low values of L where a large 

number of cells contribute.  We have chosen another method.  This technique will sum 

the effect of all particles in a cell (or some smaller portion of a cell that we will call a 

subcell) and, using off center expansions, will write the effect in terms of a multipole 

expansion centered in that cell (or subcell).  The summation over all the cells can then be 

done a single time, saving the computational expense of summing the effect of each 

particle over all the cells. 

ijmnL
nmLC ,,

,
ˆ ′′′

 We again label each cell by the subscript s.  As will be shown, computational 

efficiencies are achieved by splitting up each cell into subcells that we enumerate with 
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the subscript t as shown in the Figure B-2.  We align the boundaries of the cells so that 

particle i lies in the center of the center cell. 

 
 

Particle i at center 
of cell s=0

Cell s

Express the effect 
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Figure B-2.  The unit cell is divided into 2×2×2 = 8 subcells in the above example. 
 
 
 
 We begin the derivation by rewriting (9) for the general solution to the Navier 

equation with a grouping of particles in their cells and subcells as 
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where Nsub is the number of subcells in a cell, Nt is the number of particles contained in 

subcell t, and js,t represents the jth particle in cell s and subcell t.  The second term on the 
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right hand side of (B3) is simply the sum of contributions from particles in the center cell 

and is treated in the same way as a finite pack.  The last term in (B3) gives the 

contribution from the particles of all other cells.  Its treatment is described below. 

 We now write the contribution of all the particles in a subcell in terms of their off-

center expansion around the center of the subcell, valid for a point outside of the subcell.  

The appropriate off-center expansion is given in Appendix E.  Using (3) and the off-

center expansions we write the last term of (B3) as 
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where  is the vector from the center of the subcell labeled by s,t to the center of 

particle j and 

jtsR ,

v

( )tstststs rr ,,,, ,, ϕθ=v  is a vector in spherical polar coordinates centered at the 

center of the cell labeled by s,t. 

 An inspection of ( )tsjts
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 Now we use off-center expansions derived in Appendix A to expand these terms 

at the surface of a particle i located at the center of the center cell (see Figure B-2). 
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where  is the vector from the center of particle i to the center of the subcell labeled 

by s,t.  The coefficients , , , and  are given in Appendix A.  

Substitution of (B5), (B6), (B7), and (B8) into (B4), and (B4) into (B3), yields an 

equation that describes the displacement field in terms of vector spherical harmonics in 

the reference frame of a particle i located at the center of the center cell.  Applying the 

boundary condition (10) about particle i and the orthonormality of the vector spherical 

harmonics (6) yields an equation with the form of (B1) with 
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where the second to last term in (B9) is the off-center expansion contribution of sphere j 

on sphere i in the center cell and is a boundary correction due to the fact that 

sphere i is not actually at the center of the center cell. 
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 It is now evident why we split a cell into subcells for the treatment of off-center 

expansions.  Terms in (B9) are of the form L
its

L
jts

R
R

′′

′′

,

,  and become smaller (much less than 

one) as the number of subcells increase.  Therefore the sum can be terminated at lower 

values of  when a cell is broken into a number of subcells. L ′′

 Since (B9) depends only on the geometry of the pack, it can be evaluated a single 

time at the beginning of a simulation.  An iterative process is used to solve for the 

multipole coefficients in (B1). 

 In the method described above, the contribution of all particles from the center 

cell are summed separately from the contribution of all cells other than the center cell.  

We have also found it efficient to sum all the particles explicitly from the 27 cells nearest 

the center, and then sum the contribution of all other cells.  In that case, there is no need 

to divide the cell into subcells. 
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Correction due to assumption that each particle is at the center of the pack 

 At first glance it would appear that there could be convergence problems of the 

sum over cells of (B9) due to the fact that some terms in the summation for and 
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results in cancellation of contributions from the symmetry of the cells around the central 

particle.  However, each particle is not actually at the central point of the central 

collection of  cubes.  Therefore there is an additional contribution (  in (B9)) 

for terms that are proportional to 

2
, itsR

3
cN ijmnL

nmL
,,

,
′′′β

2
,

1

itsR
, because there is not a cancellation due to the 

symmetry of the pack.  This extra term is derived below. 

 Let iR
v

 be the vector from the center of the central cell to particle i.  The center of 

the pack considered in (B9) is therefore shifted by iR
v

 to the true center of the pack.  

When evaluating (B9) we are summing contributions from additional particles on the 

boundary.  For example, if the z component of iR
v

 is a positive , then the boundary at a 

large +z direction contains a group of particles defined in the central cell by  

izR ,

−
zS ={particles j, such that } . 2/,, LRR jziz >−

The contribution from these particles must be subtracted from (B9).  Similarly, the 

boundary at –z has the same group of particles removed, and their contribution must be 

added to (B9).  We define the other groups of boundary particles as 

+
zS ={particles j, such that } 2/,, LRR izjz >−
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−
xS ={particles j, such that } 2/,, LRR jxix >−

+
xS ={particles j, such that } 2/,, LRR ixjx >−

−
yS ={particles j, such that } 2/,, LRR jyiy >−

+
yS ={particles j, such that } 2/,, LRR jyjy >−

where the + or – signifies whether the contributions from the particles is added or 

subtracted from the +boundary. 

 Boundary corrections only affect  and  terms.  At a distance far from 

the center the contribution from these particles on the boundary can be derived 

analytically.  Far from the center, the sum over cells (cells are not broken into subcells) 

can be written as an integral as follows. 
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Using the off-center expansion of Appendix A and evaluating the above integrals yields 

the correction for the boundaries.  We do the arithmetic explicitly for the +z boundary of  

the evaluation of : ij
mC ,00,1

1,0
ˆ
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where the contributions from  and  are taken from Appendix A and the 

restriction to m = 0 is due to zero contribution from the integral for other values of m.  

The other integrals from (B10) can be performed similarly.  Contributions from the x and 

y boundaries yield similar expressions.   We summarize below the expressions for the 

boundary corrections. 
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Appendix C.  Mechanical properties for a particle pack of spherical geometry 

 The mechanical properties of a spherical pack of particles can be estimated from 

the exact solution of an isolated spherical elastic body of radius a with shear modulus μe 

and Poisson’s ratio σe embedded in a uniform elastic medium with shear modulus μ and 

Poisson’s ratio σ (Goodier, 1933).  For uniaxial tensile displacement with strain Ezz, we 

can compare the exact Goodier solution to the multipole solution to order 2

1
r

 (r is the 

distance from the sphere center) to relate the mechanical properties of the embedded 

sphere to the multipole moments.  In spherical coordinates and to order 2

1
r

, the Goodier 

solution for displacement in the region far from the sphere is given by 
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The multipole solution for the pack can be written to the same order in r using (3) and (9) 

for the displacement field.  Because the  and  are zero for a pack in equilibrium 

(i.e., forces and torques on each particle are zero), the only terms that contribute to 

i
mB 1,0

i
mB 1,1

2

1
r

 

are the  and  coefficients.  Only the m = 0 term contributes in  for a large 

random pack since the m ≠ 0  terms imply that there is not azimuthal symmetry.  Keeping 

only these terms it is a simple exercise to write (3) and (9) in the form of (C1).  In terms 

of the multipole coefficients the constants A and C are  
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By equating A and C in (C1), (C2), and (C3), one can solve for the effective mechanical 

properties of the spherical pack of particles in terms of the multipole coefficients and the 

mechanical properties of the binder matrix. 
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APPENDIX D.  Mechanical properties for an infinite pack 

 In this appendix we derive the equations that allow the mechanical properties for 

an infinite pack to be calculated from the coefficients of the multipole expansion.  We do 

not limit this derivation to isotropic packs.  In general the effective mechanical properties 

of a medium can be derived from the average stresses and strains in that medium.  For a 

material made up of rigid particles embedded in an elastic matrix, the average stress ijτ  

(i,j indices range over x, y, and z values) in the material is given by the average of the 

sum of stresses in the particles and the binder as 

∑∫ +==
p

ij
p

ijijij BI
V

dV
V

11 ττ  (D1) 

where 
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The volume of the system under consideration is V.  For void-free material BBij is related 

to the average strain E induced in the medium by a 
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ijij

a
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a
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a
xxij EEEEB μδλ +++=  (D3) 

where λ and μ are the Lamé constants of the binder. 

 To evaluate the average stress in the material we must separately evaluate the 

contributions from the particles and binder as in (D1).  The contribution for the average 

stress in the particles is derived next. 

 Equation (D2) for the volume integral of ijτ  in particle p can be turned into a 

surface integral as (iz component shown): 
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where the surface S1 is the plane surface inside the sphere perpendicular to the z axis and 

passing through z, S2 is the surface of the sphere for all points greater than z, and ap is the 

radius of particle p.  The identity on the right hand side of (D4) is derived from the 

equation  for a body in equilibrium and Gauss’s theorem (with signs adjusted to 

the orientation of ).   
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Equation (D4) can be simplified by switching the order of the z and surface integrals, and 

performing the z integral explicitly.  The result is 
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where z is the distance in the z direction from the center of the particle to the position of 

the surface element ad r .  Similarly,  
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and 
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It is now a straightforward, if tedious, exercise to calculate the in terms of the 

coefficients  of the multipole expansion.  The stress is calculated from the general 

multipole solution for the displacement field, and then substituted into (D6).  The results 

for the volume integral of stresses in the particles are as follows. 
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 We next evaluate the average stress in the binder using (D3).  To do this we must 

calculate the average strain Ea in the material.  The average zz component of strain is 

given by the change in the wall position of the unit cell divided by its length as z±
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where the contributions to the difference of the displacement over a periodic cell come 

only from the far field strain at infinity  and the boundary corrections (equations 

(B12) and (B13)) derived in Appendix B.  Similarly, it can be shown that the other 

components of average strain are given by  
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Equations A-6.5 and A-6.6 can be substituted into equations A-6.1 through A-6.3 to 

calculate the average stress tensor in the medium from the coefficients of the multipole 

expansion.  Using the average strain tensor calculated in eq. A-6.6 then allows the 

mechanical properties of the medium to be extracted. 

 

Appendix E.  Translation coefficients of Navier multipole solutions valid far from 

the surface of sphere i 

 In Appendix A off-center expansions were derived for the multipole solution of 

sphere j on the surface of sphere i in a reference frame centered at i.  A different set of 

expansions is needed for points far from the surface of sphere i.  These expansions are 

valid when the distance  from sphere i is greater than the separation  between 

spheres i and j.   The derivation is very similar to that presented Appendix A.  For 

brevity, we present only the results.  The nomenclature remains the same, with the 

exception of the definition of 

ir jiR
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The off-center multipole expansion for the harmonic term is 
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where the expansion coefficients ),(~ ,;
,; iji

mnL
mnL rRD jjj

iii

r
are functions only of the relative position 

vector jiR
r

 and the distance  from sphere i. ir

 58



The off-center multipole expansion for the nonharmonic term is 
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where we will only calculate the off-center term for Lj = nj − 1 since the nonharmonic 

terms are zero for the other two values of Lj. 

 The harmonic term coefficients are given by the integral 
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and the nonharmonic term coefficients by the integral 

.),(),()(cos

)1()12(),(~

2

0

1

1

*1
2

,;1
,;

∫ ∫
−

+

+

−

⋅
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
×

+−=

π

ϕθϕθθϕ ii
L
mnjiji

n
mn

n

ji

j

n

ji

j
ii

jjjiji
mnn

mnL

i

ii

j

jj

jj

jjj

iii

YY
r
a

r
a

dd

nnnrRE

rr

r

 (E5) 

Expressions for scalar harmonic function off-center expansions, which are needed in (E4) 

and (E5) for the functions of (rji,θji,ϕji), are given by Varshalovich (1988): 
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Performing the integral of (E4) for the harmonic term of the Navier off-center expansion, 

one obtains 
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where the constant coefficient is given by 
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 The nonharmonic term’s off-center expansion is as follows: 
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Detailed evaluation shows that the coefficient jj
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mnLe ,
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~  is always zero.  It will not be 

written out explicitly. 

 The coefficient jj
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where 
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The coefficient jj
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Finally, the coefficient jj
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